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What Neural Network Looks Like?

An example of deep neural network on image classification problem.
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The size of both NNs and datasets

Image classification: 
• Model size: 20M parameters (ResNet50)
• Dataset size: 1.2M images (224x224x3)
• Training time: 3 days on one V100 GPU
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The size of NNs and datasets

Natural Language Processing: 
• Model size: 110M parameters (BERT-base)
• Dataset size: 50M sentences
• Training time: 14 days on eight V100 GPUs

Image classification: 
• Model size: 20M parameters (ResNet50)
• Dataset size: 1.2M images (224x224x3)
• Training time: 3 days on one V100 GPU
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Eigenvalue Computation

We consider a supervised learning framework where the goal is to minimize a loss function 
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Let us denote the gradient of 𝐿(𝜃) w.r.t. 𝜃 by 𝑔. Then for a random vector, 
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Where the second equation comes from the fact that 𝑣and𝑔 are   
Independant.       
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Eigenvalue Computation

Remaining Questions:
• How many power 

iterations do we 
need to compute the 
top eigenvalues?

• How many data do 
we need to get a 
good estimation?
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Eigenvalue Computation Illustration

Top eigenvalue for different blocks
using batch size 128 with 10 runs: 
the variance is very small. 

Power iterations needed to compute top 
eigenvalue is around 10.
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High Level Outline

° DNN design requires training on large datasets

• Time consuming

• Need fast training -> parallelization -> large batch

° Large batch training does not work:

• Degrades accuracy

• Poor robustness to adversarial inputs

• Existing solutions requires extensive hyper-
parameter tuning



Stochastic Gradient Descent (SGD)

• Actually the name is a misnomer, this is not a “descent” method

Assume 𝐿(𝜃) = !
" ∑
#$!

"
𝑙(𝑧#, 𝜃)

GD: 𝜃%&! = 𝜃% − 𝛼𝛻𝐿(𝜃%)

Pure SGD: compute gradient using 1 
sample

In practice: 𝜃%&! = 𝜃% −

𝛼 !
'
∑
#$!

'
𝛻𝑙(𝑥# , 𝜃%)

Mini-batch: compute gradient using b samples

Image from https://www.cs.umd.edu/~tomg/projects/landscapes/ 18



Many many knobs
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° SGD is very sensitive to hyper-parameters and in 
particular batch size

° Batch size inter dependent with:
• Degradation in accuracy
• Poor generalizability
• Robustness of model
• Training time
• Parallel Scalability
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Degradation in Accuracy
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Larger Batch often leads to degradation in accuracy



Poor Generalization

° Why large batch suffers from poor generalization 
performance?

• A common belief is that large batch training gets attracted 
to “sharp minimas”

• Another theory is that large batch may get stuck in saddle 
points
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Loss landscape from https://www.cs.umd.edu/~tomg/projects/landscapes/
Keskar, Nitish Shirish, et al. "On large-batch training for deep learning: Generalization gap and sharp 
minima." ICLR’16 (arXiv:1609.04836)
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Hessian Based Adaptive Batch Size with Adversarials

Illustration of batch size schedules 
of adaptive batch size as a 
function of training epochs.

Yao, Gholami, Keutzer, and Mahoney. Large Batch Size Training of Neural Networks with Adversarial Training and 
Second-Order NeurIPS, 2018.

Adversarials (robust training) can
smooth out sharp “local minimas”.
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Robust Optimization and Regularization

• There is an interesting connection between the solution to 

robust optimization and a properly regularized problem

• There is an interesting connection between the solution to 

robust optimization and a properly regularized problem
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Results – Cifar10
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Cifar10 has ten classes

• ~5000 examples per class

• Total 50,000 training images

• 10,000 testing images



Results – Cifar10 — ResNet20
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Our proposed method (ABSA) achieves 

better performance

ResNet20 on Cifar10



Results – ImageNet
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ImageNet consists of 1000 classes

• Total 1,2M training images

• 50,000 testing images



Results – ImageNet – ResNet18

° Baseline:

• 450k SGD iterations, 70.4% validation accuracy

° ABSA:

• 66k SGD iterations, 70.2% validation accuracy
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Results – ImageNet – Actually Running Time
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Amazon Website Service

p3.16x large (8 V100)

Small overhead of 

• Hessian Computation

• Communication Time
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Why do we need model compression

Natural Language Processing: 
• Model size: 110M parameters (BERT-base)
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Existing methods

Compact NN
Design

Quantization Hardware Aware 
Co-design
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Benefit of Quantization

° Significantly reduce memory access volume

° Allows use of reduces precision ALUs -> Faster Inference

° Reduce communication volume by allowing execution on embedded devices

6400x
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Quantization: An Dark Art

Quantization is a very promising 

approach but:

• Very hard to get right for a 

new model/dataset

• Lots of “tricks” and 

expensive hyper-parameter 

tuning

• Ad-hoc rules that do not 
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Hessian AWare Quantization

Contributions of HAWQ:

° A systematic, second-order algorithm for inference 

quantization

° Novel compression results exceeding all existing 

state-of-the-art methods for Classification, Object 

Detection, and NLP

° No more ad-hoc tricks
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Mixed-Precision: Exponential Search Space

Which mixed-precision setting works better?
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Hessian AWare Quantization

Only quantize layers to ultra-low precision that have small Hessian spectrum
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Hessian AWare Quantization

Only quantize layers to ultra-low precision that have small Hessian spectrum
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Hessian AWare Quantization

Only quantize layers to ultra-low precision that have small Hessian spectrum
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Layer-wise Quantization: Factorial Search Space
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HAWQ Result- ResNet50 on ImageNet

Precisions for all layers as well as block-wise fine-tuning orders are 100% 

automatically selected.
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HAWQ Result- RetinaNet on CoCo

Precisions for all layers as well as block-wise fine-tuning orders are 100% 

automatically selected.
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HAWQ Result- BERT on CoNNL
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Conclusions 

°Second order information of deep neural 
network can be computed by RandNLA and 
used for:

• Improvements: speed of neural network 
training process

• Useful information: Neural network 
quantization for inference
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