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Matrices provide a natural structure with which to model 
data. 
° ! can encode information about m objects, each of which is 

described by n features; etc. 

° A positive definite ! can encode the correlations/similarities 
between all pairs of n objects; etc. 

Motivated by data problems, recent years have witnessed 
many exciting developments 
° Particularly remarkable is the use of randomization.  

• Massive data 

• Computationally expensive or NP-hard

A ∈ Rn×m

A ∈ Rn×n

RandNLA: Randomized Numerical Linear Algebra
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RandNLA in l2-norm regression 

A linear measurement model:  
                                          !  is the measurement  

                   !     !  is unknown 

                                                  !  is an error process 

In order to estimate x, solve:  

                   !

y

y = Ax + ϵ x

ϵ

̂x = arg min ∥y − Ax∥
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RandNLA in l2-norm regression 

Proper Sampling
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RandNLA in l2-norm regression 

Proper Sampling

° Uniform Sampling 
° Leverage Score Sampling
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RandNLA in l2-norm regression 

[1, 2] showed that: The run 
time needed to solve LS 
reduces from O(m ! ) to 
O( ! ).

𝑛2

mnlogn

Drineas, Mahoney, Muthu, and Sarlo ́s. Faster Least Squares Approximation, 2010; [1] 
Drineas, Magdon-Ismail, Mahoney, and Woodruff. Fast approximation of matrix coherence and statistical leverage, 
2010 [2] 
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RandNLA in l2-norm regression 

[1, 2] showed that: The run 
time needed to solve LS 
reduces from O(m ! ) to 
O( ! ).

𝑛2

mnlogn

Drineas, Mahoney, Muthu, and Sarlo ́s. Faster Least Squares Approximation, 2010; [1] 
Drineas, Magdon-Ismail, Mahoney, and Woodruff. Fast approximation of matrix coherence and statistical leverage, 
2010 [2] 

Solution: !(AT A)−1ATy ⟶ (ÃT Ã)−1ÃT ỹ
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RandNLA in l2-norm regression 

[1, 2] showed that: The run 
time needed to solve LS 
reduces from O(m ! ) to 
O( ! ).

𝑛2

mnlogn

Drineas, Mahoney, Muthu, and Sarlo ́s. Faster Least Squares Approximation, 2010; [1] 
Drineas, Magdon-Ismail, Mahoney, and Woodruff. Fast approximation of matrix coherence and statistical leverage, 
2010 [2] 

Solution: !(AT A)−1ATy ⟶ (ÃT Ã)−1ÃT ỹ

Iterative Second-order Method:  
        !x(t+1) = x(t) + H−1g
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Sub-sampled second-order optimization 

Consider optimizing !  : !  → ! :  

                                          !  

For finite-sum problems in high dimensions, where 

                                          !  

computing the exact gradient/Hessian requires a pass over 
the entire data, which can be costly when n ≫ 1. 

F 𝑅𝑑 R
min
x∈Rd

F(x)

F(x) =
1
n

n

∑
i=1

fi(x)
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Sub-sampled second-order optimization 

Consider optimizing !  : !  → ! :  

                                          !  

For finite-sum problems in high dimensions, where 

                                          !  

computing the exact gradient/Hessian requires a pass over 
the entire data, which can be costly when n ≫ 1. 

F 𝑅𝑑 R
min
x∈Rd

F(x)

F(x) =
1
n

n

∑
i=1

fi(x)

DEFINITION (( ! )-OPTIMALITY). Given ! , is an ( ! )-optimal 
solution if 

                    !

ϵg, ϵH x ϵg, ϵH

∥∇F(x)∥ ≤ ϵg and λmin(∇2F(x)) ≥ − ϵH .



�13

Approximate everything one can approximate 

To increase efficiency, incorporate approximations of:  
° gradient information, and 

° Hessian information, and 

° inexact solutions of the underlying sub-problems. 
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Approximate everything one can approximate 

To increase efficiency, incorporate approximations of:  
° gradient information, and 

° Hessian information, and 

° inexact solutions of the underlying sub-problems. 

More specifically, we consider the sub-sampled gradient and 
Hessian as： 

     !  g ≜
1

|Sg | ∑
i∈Sg

∇fi(x), and H ≜
1

|SH | ∑
i∈SH

∇2fi(x)
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Approximate everything one can approximate 

Also consider, at step t, approximate solution of underlying 
sub-problem:  

!x(t+1) = min
x∈D

{F(x(t)) + (x − x(t))Tg(x(t)) +
1

2αt
(x − x(t))TH(xt)(x − x(t))}

To increase efficiency, incorporate approximations of:  
° gradient information, and 

° Hessian information, and 

° inexact solutions of the underlying sub-problems. 

More specifically, we consider the sub-sampled gradient and 
Hessian as： 

     !  g ≜
1

|Sg | ∑
i∈Sg

∇fi(x), and H ≜
1

|SH | ∑
i∈SH

∇2fi(x)
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Non-convex methods 

Two methods we considered: 
° Trust Region: Classical Method for Non-Convex Problem 

[Sorensen, 1982, Conn et al., 2000] 

!  

° Cubic Regularization: More Recent Method for Non-Convex 
Problem [Griewank, 1982, Nesterov et al., 2006, Cartis et al., 
2011a, Cartis et al., 2011b] 

!

s(k) = arg min
∥s∥≤Δk

< s, ∇F(x(k)) > +
1
2

< s, ∇2F(x(k))s >

s(k) = arg min
s∈Rd

< s, ∇F(x(k)) > +
1
2

< s, ∇2F(x(k))s > +
σk

3
∥s∥3
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A structural result for optimization 

°To get iteration complexity, previous work required ! : 

                            !

H(t)

∥(H(t) − ∇2F(x(t)))s(t)∥ ≤ ϵH∥s(t)∥2 (1)
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A structural result for optimization 

°To get iteration complexity, previous work required ! : 

                            !  

°Stronger than Dennis-More: 

                              !

H(t)

∥(H(t) − ∇2F(x(t)))s(t)∥ ≤ ϵH∥s(t)∥2 (1)

lim
t→∞

∥(H(t) − ∇2F(x(t)))s(t)∥
∥s(t)∥

→ 0 (2)
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A structural result for optimization 

°To get iteration complexity, previous work required ! : 

                           !  

°Stronger than Dennis-More: 

                              !  

We can relax (1) to  

                         !  

Allowing a large body of RandNLA sketching results. 

H(t)

∥(H(t) − ∇2F(x(t)))s(t)∥ ≤ ϵH∥s(t)∥2 (1)

lim
t→∞

∥(H(t) − ∇2F(x(t)))s(t)∥
∥s(t)∥

→ 0 (2)

∥(H(t) − ∇2F(x(t)))s(t)∥ ≤ ϵH∥s(t)∥ (3)

Yao, Xu, Roosta-Khorasani, and Mahoney. Inexact Non-Convex Newton-Type Methods, 2018.
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Key result qua RandNLA 

Approximate gradient and inexact Hessian, at each step t, 
must satisfy:  
Condition (Gradient and Hessian Approximation Error) 

For some ! , the approximations of gradient and 
Hessian !  iteration satisfy, 

                           ! , 

                           ! , 

Lemma (Sampling Complexity) 

In order to satisfy the above condition, the sampling sizes are: 

                  !

0 < δg, δH < 1
tth

∥gt − ∇F(xt)∥ ≤ δg ≈ 𝒪(ϵg)

∥Ht − ∇2F(xt)∥ ≤ δH ≈ 𝒪(ϵH)

|Sg | ≥ 𝒪(
1
δ2

g
) and |SH | ≥ 𝒪(

1
δ2

H
)
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Theoretical Results

Optimal complexity of TR: 
Trust region algorithm terminates after at most 
                          ! , 
iterations.  

Optimal complexity of ARC: 
Cubic regularization algorithm terminates after at most 
                        ! , 
Iterations. 

The complexity of our methods is the same as the 
original proposed method! 

T ∈ 𝒪(max{ϵ−2
g ϵ−1

H , ϵ−3
H })

T ∈ 𝒪(max{ϵ−2
g , ϵ−3

H })
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Numerical Results

We evaluate our methods in the context of simple, yet 
illustrative, nonlinear least squares arising from the task of 
binary classification with squared loss.
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Numerical Results
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High Level Outline

° DNN design requires training on large datasets 

• Time consuming 

• Need fast training -> parallelization -> large batch 

° Large batch training does not work: 

• Degrades accuracy 

• Poor robustness to adversarial inputs 

• Existing solutions requires extensive hyper-
parameter tuning



Stochastic Gradient Descent (SGD)

• Actually the name is a misnomer, this is not a “descent” method

Assume f (Wt, x) = 1
n

fi (Wt, x)
i=1

n

∑

Wt+1 ←Wt −α ⋅∇W fi (Wt, x)
Pure SGD: compute gradient using 1 sample

Wt+1←Wt −α ⋅
1
b

∇W fi (Wt, x)
i=k+1

k+b

∑
Mini-batch: compute gradient using b samples

Image from https://www.cs.umd.edu/~tomg/projects/landscapes/ �26



Poor Generalization

° Why large batch suffers from poor generalization 
performance? 

• A common belief is that large batch training gets attracted 
to “sharp minimas” 

• Another theory is that large batch may get stuck in saddle 
points
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Loss landscape from https://www.cs.umd.edu/~tomg/projects/landscapes/ 
Keskar, Nitish Shirish, et al. "On large-batch training for deep learning: Generalization gap and sharp 
minima." ICLR’16 (arXiv:1609.04836)
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Hessian Based Adaptive Batch Size with Adversarials

Illustration of batch size schedules 
of adaptive batch size as a 
function of training epochs. 

Yao, Gholami, Keutzer, and Mahoney. Large Batch Size Training of Neural Networks with Adversarial Training and 
Second-Order NeurIPS, 2018.

Adversarials (robust training) can 
smooth out sharp “local minimas”.



Results – ImageNet – ResNet18

° Baseline: 

• 450k SGD iterations, 70.4% validation accuracy 

° ABSA: 

• 66k SGD iterations, 70.2% validation accuracy
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Conclusions 

° RandNLA—combining linear algebra and 
probability—is at the center of the foundations 
of data.  

° Randomness can be in the data and/or in the 
algorithm, and there can be interesting/fruitful 
interactions between the two:  

•  Improvements in first-order/second-order 
convex/non-convex optimization theory/
practice. 

•  Useful information in deep learning, 
providing more intuitive algorithm.



Thank You
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