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Outline

° Randomized Numerical Linear Algebra



RandNLA: Randomized Numerical Linear Algebra

gllattrices provide a natural structure with which to model
ata.

° A € R™™can encode information about m objects, each of which is
described by n features; etc.

° A positive definite A € R""can encode the correlations/similarities
between all pairs of n objects; etc.

Motivated by data problems, recent years have witnessed
many exciting developments

° Particularly remarkable is the use of randomization.
 Massive data

« Computationally expensive or NP-hard



RandNLA in I2-norm regression

A linear measurement model:

y=Ax+ €+

[y is the measurement

X is unknown

€ IS an error process

In order to estimate x, solve:

X = arg min

ly — Ax|



RandNLA in I2-norm regression

H Proper Sampling
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RandNLA in I2-norm regression

H Proper Sampling
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> Uniform Sampling
°Leverage Score Sampling



RandNLA in I2-norm regression

[1, 2] showed that: The run
time needed to solve LS

reduces from O(mnz) to
O(mnlogn).

X

Drineas, Mahoney, Muthu, and Sarlo’s. Faster Least Squares Approximation, 2010; [1]

Drineas, Magdon-Ismail, Mahoney, and Woodruff. Fast approximation of matrix coherence and statistical leverage,
2010 [2]
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RandNLA in I2-norm regression

[1, 2] showed that: The run
time needed to solve LS

reduces from O(mnz) to
O(mnlogn).

X

Solution: (ATA)!ATy — (ATA)7'ATS

l

lterative Second-order Method:
KtD — @ n H—lg

Drineas, Mahoney, Muthu, and Sarlo’s. Faster Least Squares Approximation, 2010; [1]

Drineas, Magdon-Ismail, Mahoney, and Woodruff. Fast approximation of matrix coherence and statistical leverage,
2010 [2]
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° RandNLA in Second-order Optimization
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Sub-sampled second-order optimization

Consider optimizing F : R? — R:

min F(x)
xeR?

For finite-sum problems in high dimensions, where

1 n
F() == ) i)
i=1

computing the exact gradient/Hessian requires a pass over
the entire data, which can be costly when n > 1.
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Sub-sampled second-order optimization

Consider optimizing F : R? — R:
min F(x)
xeR?
For finite-sum problems in high dimensions, where

1 n
F() == ) i)
i=1

computing the exact gradient/Hessian requires a pass over
the entire data, which can be costly when n > 1.

DEFINITION ((eg, €)-OPTIMALITY). Given Xx, is an (€

INIT ¢ €p)-optimal
solution if

IVFX)|| <€, and imin(VzF(x)) > —€y-
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Approximate everything one can approximate

To increase efficiency, incorporate approximations of:
° gradient information, and
° Hessian information, and

o

iInexact solutions of the underlying sub-problems.
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Approximate everything one can approximate

To increase efficiency, incorporate approximations of:
° gradient information, and
° Hessian information, and
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Approximate everything one can approximate

To increase efficiency, incorporate approximations of:
° gradient information, and
° Hessian information, and

o

iInexact solutions of the underlying sub-problems.

More specifically, we consider the sub-sampled gradient and

Hessian as:
D Vi)

IESY

A

‘|S|

and H =

| Sk

Also consider, at step t, approximate solution of underlying
sub-problem:

lES

|
xD = min{ F(x®) + (x — xP) g (x'") + —(x — xXT H( ) (x — xP))
x€D a,
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Non-convex methods

Two methods we considered:

° Trust Region: Classical Method for Non-Convex Problem
[Sorensen, 1982, Conn et al., 2000]

1
s = arg min < s, VEx®) > 4+ — <5, VZF(xP)s >
Isll <A 2

° Cubic Reqgularization: More Recent Method for Non-Convex
Problem [Griewank, 1982, Nesterov et al., 2006, Cartis et al.,
2011a, Cartis et al., 2011Db]

| 1 o
s® = argmin < 5, VF(x®) > + — < 5, V2ZF(xO)s > + = |Is]|?
SER? 2 3
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A structural result for optimization
°To get iteration complexity, previous work required H":

[(H® — V2E(xD)sD|| < ep|ls@||? (1)
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A structural result for optimization
°To get iteration complexity, previous work required H":
IH®D = V2FG)sO|| < eylls®)? (1)

°Stronger than Dennis-More:

r I(H = V2FEED)sY|
1m

f—00 | sO||

> 0 (2)
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A structural result for optimization
°To get iteration complexity, previous work required H":
I(H® = V2F(x)sO|| < eylls®]1? (1)
°Stronger than Dennis-More:

I(HY — V2Fx™))s7
m

11 > () 2
f— 00 |sO|| )

We can relax (1) to
I(H = V2F(x)sO| < eylls®]| (3)

Allowing a large body of RandNLA sketching results.

Yao, Xu, Roosta-Khorasani, and Mahoney. Inexact Non-Convex Newton-Type Methods, 2018.
19



Key result qua RandNLA

Approximate gradient and inexact Hessian, at each step {,
must satisfy:

Condition (Gradient and Hessian Approximation Error)

For some 0 < 5g, Oy < 1, the approximations of gradient and
Hessian ™ iteration satisfy,

lg, = VF()|l < 8, = O(e,),
IH, = VZF@)|| < 6y ~ Olep),
Lemma (Sampling Complexity)

In order to satisfy the above condition, the sampling sizes are:

| 1
|S, | 2 @(g) and |Sy| > @(5—2)
g A
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Theoretical Results

Optimal complexity of TR:
Trust region algorithm terminates after at most

T e @(max{eg_zefll, 6;13}),
iterations.

Optimal complexity of ARC:
Cubic regularization algorithm terminates after at most

T € O(max{e; 2, 6;13}),
lterations.

The complexity of our methods is the same as the
original proposed method!
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Numerical Results

\We evaluate our methods in the context of simple, yet
illustrative, nonlinear least squares arising from the task of
binary classification with squared loss.

Table Datasets for Binary Classification.

DATA Training Size (n) # Features (d)

covertype 464,810 54
ijcnnl 49,990 22
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Numerical Results

TR for ijecnni TR for cqvtypez

0.4, 4 0.35¢
—Full TR
—SubH TR
o 0-37 —Inexact TR| 1 (, 0.3°
17} 17}
° e —Full TR
0.2+ 1 20.25 —SubH TR
k= < —Inexact TR
S <
= 0.1+ 1 0.27
0°f ‘ 0.15° :
10° 10° 10° 10°
# of Props # of Props
(a) Comparison between variants of TR algorithms
CR for ijcnni CR for covtype2
0.4 J T 0.35 yp
N
w 0.3 7 1w 037 1
@D 19}
o o
0.2+ 1 20.25¢
= —Full ARC = —Full ARC
‘© —SubH ARC ‘© —SubH ARC
*~ 0.1 | |—Inexact ARC 1% 0.2 |—Inexact ARC
SCR (Lanczos) SCR (Lanczos)
—--SCR (GD) ‘ ---SCR (GD)
0 : 0.15 -
10° 10° 10° 10°
# of Props # of Props
(b) Comparison between variants of CR algorithms
Figure 1 Performance of various methods on ijcnnl and covertype for binary linear classification. The x-axis is

drawn on the logarithmic scale.



Outline

° RandNLA in Deep Learning
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High Level Outline

> DNN design requires training on large datasets

* Time consuming

* Need fast training -> parallelization -> large batch
° Large batch training does not work:

* Degrades accuracy

 Poor robustness to adversarial inputs

 Existing solutions requires extensive hyper-
parameter tuning

25



Stochastic Gradient Descent (SGD)

Assume f(W, x)__E (W', x)
W — W —q.- wa,(W’ X)

Pure SGD: compute gradient using 1 sample

1 k+b

+1

W -a-BE v, f(W, x)
I=K+1

Mini-batch: compute gradient using b samples




Poor Generalization

° Why large batch suffers from poor generalization

performance?
« A common belief is that large batch training gets attracted

to “sharp minimas”
* Another theory is that large batch may get stuck in saddle

points

e\
-

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Loss landscape from https://www.cs.umd.edu/~tomg/projects/landscapes/
' Keskar, Nitish Shirish, et al. "On large-batch training for deep learning: Generalization gap and sharp

' minima." ICLR’16 (arXiv:1609.04836)



Batch Size

Hessian Based Adaptive Batch Size with Adversarials

108l —— BL lllustration of batch size schedules
GG of adaptive batch size as a
function of training epochs.

—— ABS (ABSA)

103 N

102 4 T T T T
0 20 40 60 80

Epoch

Worst-Case (Robust) Cost 7.
ST ) < () ] o
Adversarials (robust training) can

”»

smooth out sharp “local minimas”.

_» Nominal Cost

=T fa) > f(a)

IYao Gholami, Keutzer, and Mahoney. Large Batch Size Training of Neural Networks with Adversarial Training and
' Second-Order NeurlPS, 2018. |



Loss

° Baseline:

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5

Results — ImageNet — ResNet18

e 450k SGD iterations, 70.4% validation accuracy
° ABSA:

e 66k SGD iterations, 70.2% validation accuracy

I3 Model on ImageNet

—— BL(BS 256)
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—— ABSA
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Epoch

Acc.

70 1

60 -

501

40 1

30

201

I3 Model on ImageNet
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—— ABSA
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° Conclusions



Conclusions

> RandNLA—combining linear aI%ebra and
p][%be%blllty—s at the center of the foundations
of data.

> Randomness can be in the data and/or in the
algorithm, and there can be interesting/fruitful
interactions between the two:

» Improvements in first-order/second-order
convex/non-convex optimization theory/
practice.

» Useful information in deep learning,
providing more intuitive algorithm.
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